Sequence Labeling¶
model_partial_ner.basic module¶
-
class
model_partial_ner.basic.
BasicRNN
(layer_num, unit, emb_dim, hid_dim, droprate, batch_norm)[source]¶ The multi-layer recurrent networks for the vanilla stacked RNNs.
Parameters: - layer_num (
int
, required.) – The number of layers. - unit (
torch.nn.Module
, required.) – The type of rnn unit. - input_dim (
int
, required.) – The input dimension fo the unit. - hid_dim (
int
, required.) – The hidden dimension fo the unit. - droprate (
float
, required.) – The dropout ratrio. - batch_norm (
bool
, required.) – Incorporate batch norm or not.
-
forward
(x)[source]¶ Calculate the output.
Parameters: x ( torch.LongTensor
, required.) – the input tensor, of shape (seq_len, batch_size, input_dim).Returns: output – The output of RNNs. Return type: torch.FloatTensor
.
Initialize hidden states.
- layer_num (
-
class
model_partial_ner.basic.
BasicUnit
(unit, input_dim, hid_dim, droprate, batch_norm)[source]¶ The basic recurrent unit for the vanilla stacked RNNs.
Parameters: - unit (
torch.nn.Module
, required.) – The type of rnn unit. - input_dim (
int
, required.) – The input dimension fo the unit. - hid_dim (
int
, required.) – The hidden dimension fo the unit. - droprate (
float
, required.) – The dropout ratrio. - batch_norm (
bool
, required.) – Incorporate batch norm or not.
-
forward
(x)[source]¶ Calculate the output.
Parameters: x ( torch.LongTensor
, required.) – the input tensor, of shape (seq_len, batch_size, input_dim).Returns: output – The output of RNNs. Return type: torch.FloatTensor
.
Initialize hidden states.
- unit (
model_partial_ner.dataset module¶
model_partial_ner.highway module¶
-
class
model_partial_ner.highway.
highway
(size, num_layers=1, droprate=0.5)[source]¶ Highway layers
Parameters: - size (
int
, required.) – Input and output dimension. - num_layers (
int
, required.) – Number of layers. - droprate (
float
, required.) – Dropout ratio
- size (
model_partial_ner.ner module¶
model_partial_ner.object module¶
-
class
model_partial_ner.object.
softCE
(if_average=True)[source]¶ The objective function for the distant supervised typing.
Parameters: if_average ( bool
, optional, (default = True).) – Whether to average over batches or not.
model_partial_ner.utils module¶
-
model_partial_ner.utils.
adjust_learning_rate
(optimizer, lr)[source]¶ Shrink learning rate for pytorch
-
model_partial_ner.utils.
evaluate_chunking
(iterator, ner_model, none_idx)[source]¶ Evaluate the chunking performance.
Parameters: - iterator (
iterator
, required.) – Dataset loader. - ner_model (
torch.nn.Module
, required.) – Sequence labeling model for evaluation. - none_idx (
int
, required.) – The index for the not-target-type entities.
- iterator (
-
model_partial_ner.utils.
evaluate_ner
(iterator, ner_model, none_idx, id2label)[source]¶ Evaluate the NER performance.
Parameters: - iterator (
iterator
, required.) – Dataset loader. - ner_model (
torch.nn.Module
, required.) – Sequence labeling model for evaluation. - none_idx (
int
, required.) – The index for the not-target-type entities.
- iterator (
-
model_partial_ner.utils.
evaluate_typing
(iterator, ner_model, none_idx)[source]¶ Evaluate the typing performance.
Parameters: - iterator (
iterator
, required.) – Dataset loader. - ner_model (
torch.nn.Module
, required.) – Sequence labeling model for evaluation. - none_idx (
int
, required.) – The index for the not-target-type entities.
- iterator (